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Abstract Using the model of fractional Brownian motion a method is given for carrving out conditional
simulations on a sparse irregularly spaced data set. The method, on average, maintains not only the fractal
co-dimension but also the histogram, mean, variance and spatial correlation of 2 two dimensional random
figld. The method can be implemented in the same way as either sequential Gaussian simulation or LU
decomposition and does not require the use of spectral functions, A sequential Gaussian example is given

using the widely published Berea sandstone data set.

L. INTRODUCTION

Fractal simulations of two dimensional surfaces or
random fields are typicaily carried out with either
some form of midpoint displacement method or
some form of Fourier transform method. Although
both of these methods and their variants maintain
the fractal co-dimension of the field they do not
always rnaintain the spatial correlation and are not
always conditional. In addition the variants of the
midpoint  displacement method do not handle
irregularly spaced conditioning data. On the other
hand geostatistical simulation methods such as
sequential  Gaussian  simulation  and LU
decomposition, while taking no account of the
fractal co-dimension, do maintain a specific spatial
correlation, are conditional, and work with
irregularly spaced data.

The method proposed here is based on a fractal
interpolation algorithm detailed by Ramelin in two
papers in 1990 and 1992, His algorithm uses the
covariance  of the incremems of fractional
Brownian motion together with what are
essentially kriging equations to simulate a {ractal
field that maintains both the fractal co-dimension
and s assoclated spatial correlation. This
algorithm provides estimates and error variances
that are the same as ordinary kriging with a power
model but without having to resort to the use of a
pseudo-covariance model and without the use of

the Lagrange parameter to solve the kriging

system.

2. THE FRACTAL CO-DIMENSION AND
FRACTIONAL BROWNIAN MOTION

The increments of fractional Brownian motion
Bu(uyy - Bylup) (Mandelbrot & Wallis, 1969} in
any number of Euclidean dimensions. have a
(Gaussian distribution with variance

EllBiua) ~ Ba(apt?] = Vylu, - up ¥ (1)

where [y is a constant of proportionality and
0 < H <1 is the fractal co-dimension, Note that
H = 0.5 gives the traditional Brownian motion with
AB{u)® « |hl where h is any increment vector
u, —up. The left hand side of (1) is equivalent to a
vartogram function as it is a variance of
increments, hence

2e(by = Vi bl

or ¥y = Vg al¥ (2)

and Fpy is therefore the total variance at the
reference unit scale |hi=1.

2.1 Determining the fractal co-dimension

Equation (2) is the same as the geostatistical
power model. Distributions that conform to (2) are
statistically seff affine since variations over any
scale 7|4 are related to the variations over scale |k}
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by
y{rh) = ¥ y(h). (3)

This implies that the variance at any scale can be
determined by the variance measured at any other
scale (Hewett 1986). In practice the experimental
semi-variogram can be determined from the
available data using

!

v = 4 L Clun) - 2ua +B)? (4)

1
<y

where n is the number of pairs {z{u,) ~ z{a,, + h)}
at lag h If the experimental semi-variogram is
plotted with log scales on both axes the slope of
the fitted fine is equal to 2H and the anti-log of the
y(h) axis intercept Is %VH, ie.

26 = Alay(hyAln b (3)

and
= e, (6

Linear regression is used to find the slope of
log-log experimental semi-variograms and thus to
determine  2f, A power model with the
appropriate power 24 can then be fitted to the
experimental  semi-variograms in  order 1o
determine %E'}p Mote that it is possible to fit a
power model to a semi-variogram without using
the log-log axes but there are many possible
combinations of Fyy and 2/ that appear to fit and
simiply doing this may not provide the correct
fractal co-dimension .

3. CONDITIONAL FRACTAL SIMULATION

The covariance of increments method proposed by
Rimelin (1990) allows generation of an arbitrary
rumber of values of fractional Brownian motion in
one step, and follows simiar logic to the
{non-fractal) LU decomposition simuiation method
described by Davis (1987) and Alabert {1987) but
also isolates one of the conditioning values to use
as an arbitrary fixed reference vahie. This reference
vatue is then used fo calculate increments and as a
benchmark against which to gauge the scaling
parameter required to implement the use of the
fractal co-dimension 4. A summary of the
covariance of increments method is given below,
all values are normal score values. Consider the
following scheme in matrix notation

a0 = A 2] + S,
G=l...n i=l. N (7

where w is a vector of independent random
variables with standard normal distribution N{O, 1),
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A is an N % » matrix of weights that maintains the

spatial structure of the field while estimating z(u;)
and 8 is an &V x N matrix controlling the rate of
random variation necessary for each simulated
vaiuve. If we now arbitrarily choose a specific
conditioning value z{u,} and reformufate (7) in
terms of increments with respect to g, we obtain

=00y - ()] = W] 2(ue) - 2(un)] + Sw
g=1...,0-1 i=1..4 {8)

where A’ is an N x -7 matrix (A without the uy
terms). Multiplying both sides of (8) from the right
by [z(up) - z{uy)]’ and taking expectations reduces
this to

[ ~uaf = A [Clua—up)]  (9)

This linear system is simifar to a kriging system and
can be solved for A’ by Cholesky decomposition if
the two covariance matrices are known. Having
solved for L', A can then be found by the inclusion

of

=l

1=y =l
5=

To obtain matrix 8 we muitiply both sides of
equation {8) from the right by w' and take
expectations giving

El ) - z(ua )y '] = S (i

We now multiply both sides of (8) by
2w - 2(ey)]Tand take expectations and we
arrive at

§8T = (Clu, —up] -V [Clur-u)]’. (12)

Now S can be computed by Cholesky
decomposition. Rimelin (1990) has shown that

[Clog ~upi} = %V;{ﬂﬁa T P T R
+hag ~upl*] (13)

and this applies for any covariance matrix of the
increments between any paired combination of
Wa, 83, & and u;. (Mote, Rimelin (1990} did not
mclude the proportionality constant ¥y as we have
here). We now have all that is required to calculate
the simulation values as in (7). The notation for
this computational scheme can be reduced to what
is essentially a set of ordinary kriging and error



variance equations without the Lagrange parameter
where A is the matrix of weights without the
weight of the closest point u,, ie.

Coply A= Coity (14}

I PP o
88’ = {ji‘jin A ?Ca,f\ﬂ {15}

Equation {15} reduces to

.8'2 = (—’L‘lq - }\-C! 3 { if)}

i o fi

when only one point at a time 18 being simulated.
The weight for point wy, is then found from (190}
From here the point estimate and variance factor
can be computed.

This method stif has the cwvent restriction
common to all LU decomposition methods, that
the number of points that can be simulated at any
one time is hmited 1o several hundred because of
the size of the covariance matrices. If applied on a
regular grid with conditioning data also on a
regular grid this method is very fast for simulating
farge numbers of nodes. It can with some care be
applied to conditioning data that is not on a regular
grid but since & different location geometry occurs
for every new siimulation location a different linear
system must be solved each time. Computationally
this is very time consuming i¥ we are following an
1.1 approach simulating many points at one time.

4. SGFRALCT

It is propesed here that a sequential approash
utilising an  adaptation of the covariance of
mgrements method, simulating only one value at 2
time, can be used to compute a geostatistical
sirmulation provided there are a sufficient number
of local irregularly spaced conditioning data.
Computationally solving a linear system involving
only one simulation point with up o 30
conditioning values 1s still fast and it is reasonable
to recaleulate the linear system at every individual
stmulation point. We will call this new simulation
scheme sequential Gaussion fractal simulation and
call the computer program SGFRACUT. The
impltementation of the scheme parallels that of
sequential Gaussian simulation (Deutsch & Joumel
1992) except that the parameters of the conditional
distribution at sach point to be simulated are
calculated using the covanance of incremenis in
{13} to form the lincar sysiem instead of simple
kriging estimate and error variance. The GSLIB
{Deutsch & Journel 1992) FORTRAN routine

S5 was adapted ro create SGFRACT and then
used to compute the foliowing fractal simulation
example. Points to note about the adaptation are:

{a} A feedback loop is included so that nodes not
simulated due to lack of close data can be
re-examined after the first random path s
completed.

{b) An option iz included o set the minimum
number of data asd/or simulated nodes that
together are used to simulate any point thus
allowing the option for nodes to be simulated
entirely from previoosly simulated nodes without
arvy original conditioning data.

{¢} A normalisation factor is applied to the square
root of the fracial variance to bring the simulated
population variance back o ome. {This factor is
not fxed and s dependent on the geometry of the
particular simulation.  For  example  the
normalisation factor changes with the model, the
grid size and/or the pverall field size} This
nornalisation factor is applied at each individual
noint simdation rather than at the compiletion of
the simulation so that it does not displace the
conditioning data values.

{d7 Following Romeln {i990) a Cholesky
forward/backward substitution routine 1s used to
solve the Hnear system as opposed to Gsussian
elimination routine as used in SGSIM.

{e) The search radius is explicitly set by the model
1o equal the range and cannot be altered. This is
because when trying to reproduce a sill the power
model 15 only valid up a semi-variance of one.
Bevond that no model s used and the spatial
structure is uncontrolled. (see section 4.1)

4,1 Fractal Modelling

When using normal score data the concept of
range as applied to & power law model is
equivalent 1o the distance at which the model
semi-variance equals 1 Therefore the first step
when modelling with a power law is to decide on
the approximate lag at which any range or
flattening oocurs. The power 2/ should then be
determined to one decimal place from the slope of
the linear regression of the log-log scaled
experimental semi-variogram up to where the value
of b} equals the range {see figure 33 Using this
value for 2/ the power law model is fitted by eve
to the experimenial semi-variogram by adjusting
the coefficient 1§’y The exact range can then be

calculated by

= gw'in(%f}[)#?ﬁ {h



and with normal score data should be calculated to
two decimal places. This range then serves as the
search radius calculated by SGFRACT. The
coefficient %L”H could be taken directly from the
regression but it is best to check the fit by eye as
there may be other factors to be considered, such
as model fis in other directions or extremely
erratic experimental semi-variogram data. If the
semi-variogram being fitted has no silf then the
regression and power model should be firted up to
the largest reliable fag, usually haif the field size in

any given direction.

5, EXAMPLE USING THE BERFA DATA

The flerea data {see figure 1) is a real two
dimensional data set comsisting of 1600 poimts
derived from air permeability measurements taken
on a stab of Berea sandstore {Giordanc et al.
1985). Chu & Joumnel {1994} used this data set to
demonstrate & spectral fractal simulation method.
They used & random sample of 64 points from the
Berea data and we do the same. However we do
not know the random sefection details which they
used and owr randomly selected points will not

necessarily be the same as theirs {see figure 2),

Berea sandstone data
5 permeability
AR S

Figure {1 Berea data full set.
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Figure 2: Berea sample data.

For this example we use the variography and
normal scores that are derived from the actual
Berea data rather than the sample data in order to
minimise  uncertainties  while  demonstrating
SGFRACT.

The anisotropic semi-variogram modelling with
fractal power models is shown in figure 3. Note
that use of a nugget effect is not necessary. The
principal direction of anisotropy is at  123% where
0%is north and corresponds to the y axis with
angles measured clockwise from 09, The model in
the 1237 direction is

¥{h) = 0.20]n]%*

which gives a range of 55,9 units. The model in the
337 direction is

#{hy=0.38/n]%

and gives 2 range of 11.2 units. We can calculate
the anisotropy ratic T in two ways, by simply
taking the ratio of directional ranges given by {17)
as 15 usual or by defining
T = i {(18)

where v= (é—!/},r;}/{é‘- Fin)  and %V,,.,q is  the
coefficient in the principal direction of anisotropy
{Chu & lournel 1992). The anisotropy ratio is then
0.20. Figure 4 shows three realisations from the

Berea sample data computed by SGFRACT using
the anisotropic power model above.
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Figure 4, Three selected simulations from the
Bersa sample data.




6. CONCLUBIONS

The significant contributions of this paper are:

(g} A method for the use of the power model with
stationary data.

(b) The ability to carry out conditional fractal
simulations using  sparse irregularly spaced data
without the necessity of spectral functions.

{c) The incorporation of the fractal co-dimension
as another statistic that can be reproduced with
Gaussian geostatistical simulations.

More work needs 10 be done on determination of
the normalisation factor in the hope that it can be
determined theoretically rather than
expenmentatly.

The incorporation of the fractal co-dimension into
sequential Gaussian simulations seems to produce
improved predictions of grade tonnage curves for
gold mineralisation type data sets {Kentwell 1997
& Kentwell et. al. 1597}
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NOTATION AND UMITS

1 Location vector

o{#,) Regionalised value

z{u}  Regionalised variable

h Translation vector or increment

vih)  Semi-variogram function

| Ingrement distance or lag

A Weight

T Anisotropy ratio

C Variance covariance matrix

A Matrix of weights

:E-!)(u) Conditional simulation

W Vector of standard normal score
r Scaling vector where 7 is ot

necessarily equal to 7;
B{u} Brownian motion
By{u} Fractional Brownian motion

H Fractal co-dimension

Vi Proportionality constant

s Estimation error standard
deviation matrix

iy Increment reference point
location

5 Standard deviation

{3y Covariance



